
18/9/2007 I2A 98 slides 7 1 Richard Bornat
Dept of Computer Science

The dictionary problem.

A dictionary can be seen as a database of records; in
each record we distinguish the key part (the word) and
the data part (its definition).

When sorting such a database, we sort according to
the key part, and the rest of the record gets a free ride.

For example, we might sort an array of employee records into
alphabetical order of employee name, or into numeric order of
salary, or into date order of joining the company.

Same records – different keys.

The cost of comparison will depend on the size of the
key; the cost of exchange or copy will depend on the
size of the record.

None of the sorting algorithms so far needs to be
changed to cope with the key / data distinction.

Though we might have to choose differently between
algorithms depending on the relative cost of comparison and
exchange.

18/9/2007 I2A 98 slides 7 2 Richard Bornat
Dept of Computer Science

In Java, we can define an interface for items which
can be sorted (we provide an ordering method) or be
searched for (provide an equality method).

Weiss (pp 91-93) defines a Comparable interface. In
principle we need (=) and (!):

public interface RBComparable {
 int iseq(RBComparable b);
 int islesseq(RBComparable b);
}

Any class which implements this interface must provide at least
those two methods.

18/9/2007 I2A 98 slides 7 3 Richard Bornat
Dept of Computer Science

An example implementation of this interface for a
word"string list dictionary:

public class DictElem implements RBComparable
extends ... implements ... etcetera ... {
 private String word;
 private StringList definition;
 ... (loads of other stuff) ...
 int iseq(RBComparable b) {
 return b instanceof DictElem &&
 word==((DictElem)b).word;
 }
 int islesseq(RBComparable b) {
 return ((DictElem)b).comparesTo(word)<=0;
 }
 ... (more stuff) ...
}

Note a subtle distinction between iseq and islesseq: one always
delivers a value, the other may throw an exception.

18/9/2007 I2A 98 slides 7 4 Richard Bornat
Dept of Computer Science

I shall continue, in presenting algorithms, to pretend
that I can use operators like == and <= to compare
keys of records; in practice you might have to use
methods from an interface like RBComparable.

In the case of searching in arrays (binary chop and
hash addressing), the key / data distinction isn’t

important. When it comes to searching in recursive
data structures (binary trees, B-trees), it comes to

the front.

18/9/2007 I2A 98 slides 7 5 Richard Bornat
Dept of Computer Science

Searching in arrays: binary chop.

We want to find a record in a sequence Am n.. #1 with
key x.

We simplify this to the problem of detecting that there
is a record identical to x: $! < % =k m k n x Ak: .

The obvious solution is O N()-time.

We shall see later that we can search a sorted array in
O Nlg() time.

Later we shall see that, given enough space,
there’s an O 1()-time solution to this problem!

18/9/2007 I2A 98 slides 7 6 Richard Bornat
Dept of Computer Science

An aside: solving “$?” problems.

Repetition in programs is the analogue of
quantification in predicate calculus.

To find x in an array by sequential search: look along
the array and record success when you see an x:

i for (k=m; k<n; k++)
 if (x==A[k]) found=true;

That isn’t a correct solution, because it never records failure!

There is, of course, no ‘else’ in this program.

ii found=false;
for (k=m; k<n; k++)
 if (x==A[k]) found=true;

The trivial case of $k... is false; we assume failure in case
Am n.. #1 is empty.

There is no ‘else’ in this program either.

This program illustrates a general solution to “$?”
questions.

18/9/2007 I2A 98 slides 7 7 Richard Bornat
Dept of Computer Science

An aside: solving “&?” problems.

There is a well-known equivalence in predicate
calculus: & ()()x P x is equivalent to ¬ $ ¬ ()()()x P x .

This means that to solve a “&?” problem – are all the
components of the array like this? – we look for a
counter-example.

For example, is every element of the sequence (=k)?

iii allsame=true;
for (k=m; k<n; k++)
 if (x!=A[k]) allsame=false;

The trivial case of &k... is true; we assume success in case
Am n.. #1 is empty.

There is, once again, no ‘else’ in this program.

This program illustrates a general solution to “&?”
questions.

18/9/2007 I2A 98 slides 7 8 Richard Bornat
Dept of Computer Science

Solving “$?” problems more quickly.

Suppose we write a method find to see if there is a
value x in Am n.. #1:

iv boolean find(type x, type[] A,
 int m, int n) {
 int found=false;
 for (int k=m; k<n; k++)
 if (x==A[k]) found=true;
 return found;
}

We might as well return true as soon as we find the
first occurrence of x:

iv' boolean find(type x, type[] A,
 int m, int n) {
 int found=false;
 for (int k=m; k<n; k++)
 if (x==A[k]) return true;
 return found;
}

18/9/2007 I2A 98 slides 7 9 Richard Bornat
Dept of Computer Science

Now we don’t need the variable found, because it
always contains false:

iv'' boolean find(type x, type[] A,
 int m, int n) {
 for (k=m; k<n; k++)
 if (x==A[k]) return true;
 return false;
}

There is still no ‘else’ in this program.

18/9/2007 I2A 98 slides 7 10 Richard Bornat
Dept of Computer Science

Each of the examples i-iv'' implements what is called
a sequential search; each is O N() in time and O 1() in
space. None of them takes any time to ‘set up’, or
prepare the sequence for searching.

There are alternatives, even when using arrays.

Binary chop takes O N Nlg() time to setup (because
the sequence must be sorted), then O Nlg() time for
each subsequent search. It is O 1() in space. It takes
O N() time to add or delete an element from the
sequence.

Hash addressing takes O N() time to setup (because it
uses a table at least twice the size of the sequence you
are searching), then O 1() time for each subsequent
search. But it’s O N() in space. It takes O 1() time,
mostly, to add an element to the sequence, but
sometimes that can be O N() – and similarly for
deletion.

18/9/2007 I2A 98 slides 7 11 Richard Bornat
Dept of Computer Science

Binary search trees take no time to set up, and can be
made to take O Nlg() time to search. But they use new,
and so the space behaviour is unpredictable, as is
insert / delete performance.

Engineering tradeoffs again: setup time vs search time, space
vs both of them.

18/9/2007 I2A 98 slides 7 12 Richard Bornat
Dept of Computer Science

‘Binary chop’ search.

Look at the midpoint of a sorted sequence, and decide
whether the sought-for key – if it’s present – must fall
in the first or the second half of the sequence.

We keep on ‘probing’ until we have reached a
sequence length 1; then we have a look to see if we
have the key we are looking for.

Each ‘probe’ divides the problem in half, but does no more:
that turns out to be important for reasons of efficiency.

18/9/2007 I2A 98 slides 7 13 Richard Bornat
Dept of Computer Science

I assume that m n< – that is, the sequence we are
searching isn’t empty:

v boolean binarychop
 (type x, type[] A, int m, int n) {
 while (m+1!=n) {
 int k = (m+n)/2;
 if (A[k]<=x) m=k; // in top half?
 else n=k; // in bottom half?
 }
 return A[m]==x; // the answer!!!!
}

false assertion, often believed: “we use binary chop search
when we look up a name in the telephone directory”. We
don’t; we guess where the name might be and look there, not
in the middle; from what we see we guess more accurately,
and so on. It’s a form of interpolation search.

Binary chop is what you do if you have no basis for
interpolation.

18/9/2007 I2A 98 slides 7 14 Richard Bornat
Dept of Computer Science

How fast does binary chop search run?

Each probe (each execution of the while loop) divides
the sequence almost exactly in half, so we make
lg N' (probes in a sequence length N,

X' (is ‘the ceiling of X’, the smallest integer which is not
smaller than X.

and we make one final comparison.

This is obviously O Nlg() in execution time.

By contrast, sequential search is O N() and makes
about N

2 comparisons on average.

If N is more than a very small number, binary chop is
going to be faster than sequential search; if N is a
large number, binary chop is going to be very much
faster than sequential search.

Don’t forget the ‘setup costs’: the array must be sorted before
the first search, which will take at least O N Nlg() time.

18/9/2007 I2A 98 slides 7 15 Richard Bornat
Dept of Computer Science

How to make a catastrophic mistake.

It is no accident that I draw an array, indexed from m
to n #1, like this:

m n

It is no accident that I write each index above the
array and to the right of a vertical line:

m i n

Drawing them like that makes arithmetic about the
number of elements much easier.

The top picture shows an array with exactly m n#
elements. In the second picture the left-hand segment
has i m# elements, and the right-hand segment has
n i# elements.

18/9/2007 I2A 98 slides 7 16 Richard Bornat
Dept of Computer Science

It is particularly easy to find the middle element of the
array. I simply write k m n= +() ÷ 2, or as near as I
can get to that in Java, to find the middle element of a
sequence Am n.. #1.

This doesn’t work exactly if the array has an even number of
elements, but that isn’t usually a problem.

If you draw your arrays the wrong way, like this:

m i n

– indicating a sequence indexed from m n.. – then it’s
fiddlier to find lengths, and it’s much fiddlier to find
mid-points.

18/9/2007 I2A 98 slides 7 17 Richard Bornat
Dept of Computer Science

If you index your arrays the wrong way, then it’s easy
to write the binary chop procedure so that it loops:

vi boolean badchop
 (type x, type[] A, int m, int n) {
 // find x in A[m..n]
 while (m!=n) {
 int k = (m+n)/2;
 if (A[k]<=x) m=k; // in top half?
 else n=k; // in bottom half?
 }
 return A[m]==x; // the answer!!!!
}

If m n+ =1 then m n m+() ÷ =2 , and then if A m x[] !
the method will loop.

The correct formula for the midpoint of a sequence
indexed m n.. is, of course, m n+ +() ÷1 2.

18/9/2007 I2A 98 slides 7 18 Richard Bornat
Dept of Computer Science

How to slow a binary chop search.

Suppose we look for x each time we make a probe:

vii boolean ternarychop
 (type x, type A[], int m, int n) {
 while (m<n) {
 int k = (m+n)/2;
 if (A[k]==x) return true; // success!!
 else
 if (A[k]<x) m=k+1; // in top half?
 else n=k-1; // in bottom half?
 }
 return false; // failure!!
}

This method makes about twice as many comparisons
as binary chop.

It doesn’t pay, sometimes, to follow your instincts as a
programmer ...

18/9/2007 I2A 98 slides 7 19 Richard Bornat
Dept of Computer Science

Each probe-and-test eliminates one element and
reduces the problem to about half its original size.

One element in the array can be found in one probe-
and-test (the middle one); two can be found on the
second probe-and-test (the middle one of the top half,
and the middle one of the bottom half); ... 2i can be
found on the ith probe-and test ...

Each probe-and-test covers 1+(the number of
elements covered in all the previous probe-and-tests).

So about half the time you have to do lg N probe-and-
tests, about a quarter of the time you have to do
lg N #1 probe-and-tests, ...

Each probe-and-test does two comparisons; the
number of comparisons on average is about

2
2

2 1
4

2 2
8

1
2

lg lg lg lg
N N N

N+ + + +#() #()

=
1 1

2
1

4
1

2

1
2

1
4

1
2

1

+ + + +()
+ + +() +
)

*
+
+

,

-
.
.

÷()

÷()

... lg

...

N

N N

N
 / #2 1lg N .

18/9/2007 I2A 98 slides 7 20 Richard Bornat
Dept of Computer Science

So we don’t test on every probe; binary chop is
about twice as fast as ternary chop.

Academic health warning: the argument above is valid only
for a machine which takes one test to decide between two
conditions (A xk ! and A xk >), but two tests to decide
between three conditions (A xk = , A xk < and A xk >).

18/9/2007 I2A 98 slides 7 21 Richard Bornat
Dept of Computer Science

Insertion, deletion and binary chop.

Suppose that we want to insert x into the array, if it
isn’t already there.

We can use the binarychop technique to find the
position m at which x would occur if it was in the
array. Then there are three possibilities: either x
comes before A m[], it’s equal to A m[], or it comes
after A m[].

In the first case we must shift A m n.. #[]1 up one
position to make room; in the second we must replace
the data part of A m[]; in the third we must shift
A m n+ #[]1 1.. up one position.

Shifting a section of the array out of the way is O N()
(slides 1); assigning the new key and data values is
O 1(); the initial search is O Nlg(); so the whole is
O N N1+ +()lg which is O N().

18/9/2007 I2A 98 slides 7 22 Richard Bornat
Dept of Computer Science

viii boolean binarychopinsert
 (type x, type[] A, int m, int n) {
 while (m+1!=n) {
 int k = (m+n)/2;
 if (A[k]<=x) m=k; // in top half?
 else n=k; // in bottom half?
 }
 if (x<A[m]) {
 for (int i=n; i>m; i--) A[i]=A[i-1];
 A[m]=x;
 }
 else
 if (A[m]<x) {
 for (int i=n; i>m+1; i--) A[i]=A[i-1];
 A[m+1]=x;
 }
 // replacement of data part not shown
}

Deletion is slightly simpler: find the position m at
which x would occur if it was in the array; if x does
occur at that position then shift A m n+ #[]1 1.. down
one position to obliterate it. That is worst-case O N()
(because of the shifting) just like insertion.

18/9/2007 I2A 98 slides 7 23 Richard Bornat
Dept of Computer Science

Key points
Binary chop uses a sorted database.

Binary chop search is O Nlg() in time and O 1() in space.

Insertion into the table is O N() in time and O 1() in space, deletion
likewise.

Setup costs are the cost of sorting – probably O N Nlg() in time, and
either O N() space (if a database copy is required) or O 1()
otherwise.

Binary chop is faster than ternary chop, but it is not the fastest search
mechanism.

